A New Hybrid Grey Neural Network Based on Grey Verhulst Model and BP Neural Network for Time Series Forecasting
نویسنده
چکیده
The advantages and disadvantages of BP neural network and grey Verhulst model for time series prediction are analyzed respectively, this article proposes a new time series forecasting model for the time series growth in S-type or growth being saturated. From the data fitting's viewpoint, the new model named grey Verhulst neural network is established based on grey Verhulst model and BP neural network. Firstly, the Verhulst model is mapped to a BP neural network, the corresponding relationships between grey Verhulst model parameters and BP network weights is established. Then, the BP neural network is trained by means of BP algorithm, when the BP network convergences, the optimized weights can be extracted, and the optimized grey Verhulst neural network model can be obtained. The experiment results show that the new model is effective with the advantages of high precision, less samples required and simple calculation, which makes full use of the similarities and complementarities between grey system model and BP neural network to settle the disadvantage of applying grey model and neural network separately. It is concluded that grey Verhulst neural network is a feasible and effective modeling method for the time series increasing in the curve with S-type.
منابع مشابه
Forecasting Model of the Cultural Heritage Displacements Based on Verhuslt Radial Basis Function Neural Network
Based on the displacement monitoring sequence of cultural heritage, the stability of relics could be judged effectively by forecasting the displacement in the future. Through analyzing advantages and disadvantages of grey forecasting methods and neural network respectively , a new forecasting model of verhuslt radial basis function neural network was proposed. First, in this study,by use of the...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملForecasting Time Series Data Using Hybrid Grey Relational Artificial Neural Network and Auto Regressive Integrated Moving Average Model
In business, industry and government agencies, anticipating future behavior that involves many critical variables for nation wealth creation is vitally important, thus the necessity to make precise decision by the policy makers is really essential. Consequently, an accurate and reliable forecast system is needed to compose such predictions. Accordingly, the aim of this research is to develop a ...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کامل